
Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 1

PREVENT AND DETECT

Integrated Quality Management

Cause -Effect Modeling: The Case for Using
Models to Improve Quality, Shorten
Time-to-Market, and Reduce Costs

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 2

_Cause-Effect Modeling: The Case for Using
Models to Improve Quality, Shorten
Time-to-Market, and Reduce Costs

Introduction
In this whitepaper, we’ll discuss the proven approach of Cause-
Effect Modeling. By representing detailed functional requirements
with mathematically complete models, Cause-Effect Modeling
represents a fundamental change in the software development
rules of the game.

What Is Cause-Effect Modeling?
Cause-Effect Modeling is the process of building a mathematically
rigorous representation of the intended functional behavior for
proposed software. This isn’t an entirely new approach; the
problem of defining, measuring, and testing detailed functionality
has been tackled by hardware engineers in the past, particularly
chip testing engineers, who needed to be able to quickly confirm
the correct functional behavior of every computer chip coming out
of a fabrication plant. The algorithms used to design tests for chip
logic can also apply to the functional logic of software.

How Is Cause-Effect Modeling Applied?
This previous work has been used by Critical Logic and its partners to develop a modeling tool that allows
functional and test engineers – the line between the two is significantly blurred when models represent
requirements as well as tests – to focus on building a graphical model of the intended behavior of the
software, then rely on software to analyze the requirements and generate the actual test cases.

This approach represents a paradigm shift in the use of requirements and testing. If you make the model
complete and correct, then the specifications and test cases – which guarantee full functional coverage – are
produced automatically.

Efforts to implement true
test-driven development

have been stymied by
the lack of solutions that
allow for requirements to
drive tests. Until we know
that our tests cover all the

business’s needs, TDD
will continue to prove an

elusive goal.
-Peter Becker

Founder of Critical Logic

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 3

The modeling algorithms are based on chip-testing technology that essentially builds a series of cause-effect
graphs. The purpose of the model is to:

 _ Represent all of the software’s functional requirements

 _ Identify ambiguities or other quality issues in the requirements prior to coding

 _ Generate specifications that can be used for coding and/or documentation purposes

 _ Design and generate the fewest number of test cases that exercise 100% of the defined functionality

 _ Provide a mechanism that simplifies the maintenance of requirements and their associated tests

The Process
The essential process steps in Cause-Effect Modeling are straight-forward:

1. Collect information that describes the intended behavior of the system as observed at its interfaces
(GUI, databases, inter-system transactions, etc.)

2. Represent this functional behavior in a cause-effect logic diagram

3. Process the model through automated algorithms that design the optimum number of test cases
giving full functional coverage

4. Revise the models and regenerate tests as necessary to support functional changes to the software

Cause-Effect Modeling and QA
The effectiveness of Cause-Effect Modeling is derived from two components of the process:

1. Functional Requirements. First, the modeling process itself forces rigor in the representation of the
functional logic. Ambiguous or poorly understood rules of behavior create disconnects in the model which
then need to be resolved. The assumption is that if the modeler encounters these ambiguities, then it is
likely that others participating in the development effort will also have the same issues, and the potential
for these to translate into incorrect software output is high. In fact, repeated analysis has shown that
70-80% of all software defects originate from poor or misunderstood definitions of required functionality.
Rigorous representation of functional logic substantially lowers or eliminates the occurrence of these
defects.

Another way of looking at this is a requirement’s ambiguity must eventually be resolved in order to deliver
functioning code. Cause-Effect Modeling provides an approach that allows the functional modeler, working
with the business stakeholders, to identify and resolve requirements ambiguity prior to coding. Without
functional modeling, the coder will often be defining the requirements in order to get code delivered.
Many times their educated guesses are correct; but all too often they are not, resulting in customer
dissatisfaction and rework.

Great requirements obviously have substantial value, but the real benefit of effective Cause-Effect
Modeling rests in the design of test cases. Cause-Effect Modeling means that IT now has the ability
to “prove” to the business that all their requirements are being met because the tests cover all defined
functionality.

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 4

2. Functional Testing. The rigorous representation of
functionality allows the application of sophisticated
mathematical and logic algorithms to design test cases.
The need to test complex logic in a small number of test cases
has existed in the hardware world for decades and became
especially critical with the advent of computer chips. The
result has been the creation of very effective test case design
algorithms for verifying functional logic. These have been an
important component for assuring the very high reliability of
computer hardware. Unfortunately, software QA and testing
groups have largely eschewed formal test design technology in
favor of informal and largely undisciplined testing processes.
Applying formal test design algorithms to test functional logic in
software results in very high reliability software for less time and
cost than traditional testing approaches.

This is very different from traditional test automation and management. Automating test cases that
provide poor functional coverage does not remove any additional defects. It is the issue of test case design
that keeps current testing practices at the level of keyboard pounding. On a typical project, the tester
evaluates what results need to be validated and attempts to choose from many possible combinations of
inputs that lead to those results. Test cases are derived from this analysis and executed. However, in the
current state of the practice, this process is largely subjective and at the discretion of the test analyst.

The subjective nature of test case design is repeatedly shown in the following ways:

 _ Different test analysts testing the same functionality come up with different tests and cover different
(though overlapping) functionality.

 _ In selecting testers for a team, the emphasis remains almost on individual traits (experience with the
application, test “karma”) rather than the process for designing tests.

 _ When these tests are evaluated against quantitative coverage criteria, functional coverage is well
below 60% and code execution coverage is even less.

 _ Most importantly, defects routinely go undetected because the test cases were not designed to fully
exercise the system’s functionality.

A Better Approach
Model-based testing carries with it important implications:

 _ The functional modeler derives the model from the same business requirements that traditionally were
used by the coder. The difference is that the functional modelers can start working almost as soon as the
first set of overall Use Cases or User Stories are created. In this way, the functional modeler enhances the
requirements discovery process by using the graphical tools in the modeling software to quickly expose
inconsistencies and incompleteness in the requirements. This means the specifications are dramatically
improved with a result that there is at least a 50% reduction in the number of defects found in code as it is
delivered to the QA team for testing.

… if you can never come
close to completeness in

testing, then you would be
unwise to think of testing

as ‘quality assurance’
-Richard Bender, article in Software

Quality Magazine

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 5

 _ Since the models are built as the requirements are completed, test case design can be accomplished
in parallel with or even ahead of coding. Project managers can more accurately size the development
effort since the requirements and specifications are much more stable. Coders use the model-based
specifications and test cases as a guide for unit level testing and to verify correct interpretation of the
specifications. Other test issues, such as data setup and test environment configuration, can also start
much earlier in the development lifecycle.

 _ In Agile or short-period iterative development methodologies, test-driven development and having
tests before coding is done is an important critical success factor. The reality is that getting tests ready
this early has proven to be extremely difficult, leading to a testing bottleneck that extends the process
to the point where the development cycles start looking more like a waterfall approach. Since functional
models are built as part of the requirements process, model-generated tests may be the only practical
means of meeting this important demand, short of applying significant numbers of QA staff to the
problem. For example, Agile suggests a 1:3 ratio of QA staff to developers. With Cause-Effect Modeling,
that ratio is reduced to around 1:5 or 1:6.

 _ With model-based testing, the impact of a change in requirements or specifications is immediately
visible. Since specifications, test cases, and other quality products are automatically derived from the
model, changing the model changes the test scripts.

 _ Test effectiveness is consistent and complete. Functional coverage is always 90-100%, and other test
coverage measurements – such as code coverage – are also very high. These results are consistent from
test engineer to test engineer and independent of their experience with the application or business area.

Measuring Actual Results
Do these anticipated benefits manifest themselves in real projects? The short answer is yes. However,
exposing and quantifying the results becomes tricky when you consider that IT development efforts
are seldom held accountable to standards and metrics. Whereas process-oriented endeavors such as
manufacturing and large-scale service delivery (e.g. call centers, health or insurance claims processing) have
continuous metrics to monitor performance, software development organizations seldom track and manage
to clear performance metrics. Consequently, it is much harder to reliably assess the impact of a process
change or a new tool in software development compared to when a new piece of equipment is installed in a
factory production line. While IT organizations demand proof that model-based testing will improve software
quality, few are willing to collect and track the metrics that would routinely supply definitive numbers.

Instead, verifying the value of Cause-Effect Modeling and test design requires reliance on individual
opportunities to track data for specific projects and assess the results. This opportunistic approach yields
important results that clearly show the benefits, even though the inconsistency of metrics from project to
project makes generalizations harder to prove. Therefore, the remainder of this paper looks at specific results
from individual projects where quantitative or qualitative data has been collected and conclusions arrived at
about the effectiveness of Cause-Effect Modeling and model-based testing.

Defect Avoidance
One of the strengths of Cause-Effect Modeling is that the modeling process itself highlights errors and
ambiguities in the specification of the functionality. Such ambiguities lead to misunderstandings on the part
of developers which, in turn, translate into coding defects. Therefore, modeling should reduce the number
of initial functional defects introduced into code. Two Critical Logic client projects have done analysis in this
area, both confirming the substantial reduction in defects.

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 6

Middleware Services at Wells Fargo Bank
In this project, the client was building a complete set of middleware methods to support various Web-based
and telephone banking applications. Typically, each implementation would add or modify 5-10 business
methods to the middleware inventory. Methods were fairly complex in terms of business rules and processes
for analyzing data requested from the systems of record. Wells Fargo evaluated the total number of defects
logged against 20 methods that were coded prior to the use of Cause-Effect Modeling as opposed to the
number of defects logged against approximately 30 methods that were tested under the Cause-Effect
Modeling and test technology. The conclusion of management was the number of defects was reduced by
47%. Further, the number of defects escaping into post-functional testing or production was close to zero.

Business Credit Application
In this project, careful metrics were kept on the source
of defects. All functionality was subjected to functional
modeling. By tracking the source of all defects, the
client could determine if ambiguities in the functional
specifications were being caught prior to coding or
whether they were translating into defects in code,
adding to the rework. As a baseline for comparison, an
industry average was applied. Multiple studies have
shown that approximately 60-70% of defects logged
against software actually originate in the functional
specifications. Therefore, a substantial reduction in
spec-based defects would indicate that the Cause-Effect
Modeling process is having an effect.

During the testing of the application, 2148 defects were
logged. However, as the accompanying chart shows, the
number of defects attributed to specification problems
was less than 4%. Cause-Effect Modeling clearly had
a major impact on ensuring that functionality was well
understood.

Defect Escapes
The key measure of any testing approach is prevention of defect escapes into production. Functional
modeling and the automated test designs derived from it are valuable in that the resulting tests are quite
thorough in their coverage of the application functionality. The following are representative examples:

Commercial Banking Application
This banking application involved complex business and presentation logic defined in 34 use case
documents. Functional test cases for 24 of these use cases were generated from functional models using
Critical Logic’s functional modeling software (DTT). Functional test cases for the remaining 10 use cases
were manually written by experienced test engineers. The application went through a three-phase test cycle
where the functional tests were applied in the System Integration Test (SIT) phase, and then a select group
of business experts (CORE) applied their tests. Finally, a separate group of test engineers performed a final
comprehensive UAT (User Acceptance Test) phase using their own set of test cases.

65%

4%

50

25

100%

75

Typ. Project DTT Project

% of Bugs Attributed to Specs

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 7

Counts were kept of defects and the test phase in
which each was found. If Cause-Effect Modeling
and test design is effective, these tests should
find most, if not all, of the functional defects –
leaving relatively few to be detected in later test
phases. Earlier detection means less rework.
The results of the analysis are presented in the
following chart to the right.

As the numbers make clear, the Cause-Effect
Modeling tests were highly effective in identifying
defects when compared to traditional ad-hoc
approaches to test case design. In this project,
the same test engineers did both the model-
based test design and the ad-hoc test design, suggesting that it is the Cause-Effect Modeling that provides
the value, not differences in test teams. As the numbers clearly show, ad-hoc test approaches unfortunately
justify the need for multiple test phases using different teams, imposing higher project costs and later defect
discovery.

Industrial MRP
An essential capability for Oracle (formerly known as Sun Microsystems) is the ability to define, price, and
order complex hardware and software configurations to meet a customer’s needs. To support its worldwide
sales staff, Oracle created a “configuration support” application which allows sales representatives to build
hardware configurations, generate customer quotes, and pass the approved sale on to manufacturing for
fulfillment.

The “Configurator” application is complex. There are more than 60,000 business rules describing all options
for integrating and pricing Oracle products. The fast pace of Oracle technology development means that each
month, 25% of the business rules change as new products are introduced and current products changed or
deleted. With this level of complexity and change, testing presents a huge challenge. ANY defect is costly and
visible to the customer. At the same time, frequent, thoroughly tested releases are required to keep pace with
product releases. There is no room for error and no time to go back and get it right later.

Initially, Oracle was experiencing excessive defect escapes into production, including errors of a severity that
made configuration and sale of certain products impossible. Cause-Effect Modeling and test case design
was instituted on a product-by-product basis over several releases and the number of defect escapes
carefully tracked.

As the chart clearly indicates, production defect escapes immediately begin dropping and eventually reach
zero or near-zero rates for ongoing releases.

25

50

75

100%

Model Coverage All Ad Hoc

151

154

121

32
18

232

UAT
CORE
SIT

Impact on Defects

0

5

10

15

20

Release Number

N
um

be
r o

f D
ef

ec
ts

15x 16x 17x 18x 19x 20x

Cause-Effect Modeling: The Case for Using Models to Improve Quality,
Shorten Time-to-Market, and Reduce Costs 8

Cost Avoidance and Time-to-Market Improvement
Substantial elimination of defect escapes is highly desirable, but it must be looked at in the context of the
cost and time required to obtain these results. If a 90% reduction in defect escapes is only possible by
tripling the test effort, then the ROI may be questionable. Fortunately, in all of the examples cited above, the
delivery costs and time were reduced.

For the Business Credit application, reducing the number of requirements defects to 4% also reduced the
project time by approximately 5 weeks or a 15% time and cost savings over the entire life of the project. Most
of this gain was simply a result of avoided rework time and associated costs.

In the commercial banking application, recognition that the model-based tests were successful in locating
most if not all functional defects allowed the UAT and CORE team to reduce and redirect their test efforts with
the result that each full test cycle was shortened from 4 weeks to 2 weeks, or a 50% decrease in testing time.

The MRP example leveraged the model-based technology further. In this case, the models were used to
create automated XML test scripts directly from the functional models. All test cases are executed in an
automated environment, eliminating the need for laborious manual execution. Using this approach, every
release experiences a full regression test (over 25,000 test cases), all run in a matter of 2-3 days. Full
regression would be impossible if it had to be done manually. Moreover, once the models were built and all
test maintenance is done simply by modification of the models, the total number of QA resources required
for each release shrank by 33%. Another objective was time-to-market improvement. The original process
required close to three months from start to finish. Cause-Effect Modeling and test automation has reduced
the cycle time by 2/3 so that now the process requires only one month to complete.

While reductions in test time and staffing are desirable, the biggest focus must be placed on rework
avoidance. 40-50% of total project costs are typically expended in rework, specifically in fixing defects after
they have already made their way into the code and are discovered during test or production. Even if there is
no reduction in the staffing or time required to model, generate, and execute tests, the ability to avoid defects
or to find them in the earliest test phases means substantial rework elimination.

Summary and Conclusion
IT organizations rarely keep ongoing metrics about projects and processes. This makes it difficult to
evaluate the effectiveness of new tools or process change. Such is especially the case for quality metrics,
since by the time the project gets to the testing phase (where quality is definitively determined), any number
of project factors will be cited to explain the achieved quality. Measuring the impact of significant testing
and quality changes thus requires special effort to collect and interpret the data. For Functional Modeling,
the expected improvements are in the avoidance of functional defects prior to coding and the detection of all
significant remaining functional defects in the application during functional testing.

The projects cited in this paper were carefully measured to determine the impact of Cause-Effect Modeling
and test design on defect rates. The evidence is clear that this approach does make a major contribution
to the reduction in defects for delivered applications. Moreover, the ability of this technology to identify
functional ambiguities in specifications and thus reduce the number of defects introduced into code means
that rework costs will be substantially reduced as well.

 To learn more, contact Critical Logic at
www.Critical-Logic.com

